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A Surface Integral Equations Method for
Homogeneous Optical Fibers
and Coupled Image Lines of

Arbitrary Cross Sections

CHING-CHUAN SU

Abstract —Based on the surface integral equations, a novel method is

developed to treat the propagation characteristics of homogeneous optical

fibers of arbitrary cross sections in both the rigorous vectorial and the

approximate scalar formulations. This method is ready to be generalized to

the cases of multiple dielectric wavegoides, such as the coupled dielectric

image lines used in microwaveintegrated circuits. Further, Green’s func-

tion at cutoff is presented so that the corresponding cutoff frequencies can

be treated. Numerical results of propagation characteristics of single and

double waveguides are presented in both the vector and solar forms.

I. INTRODUCTION

I

N THE TREATMENT OF propagation characteristics

of homogeneous optical fibers with arbitrary cross sec-

tions, several numerical methods have been proposed.

Among them, Goell [1] has developed the method of cir-

cular-harmonic expansion, in which the interior and the

exterior fields are expanded respectively in the Bessel and

the modified Bessel functions with unknown coefficients.

The propagation constants of guided modes, as well as

such coefficients, are determined by solving a matrix equa-

tion which, in turn, results from matching the four kinds of

tangential fields around the boundary of the core region.

This expansion method is rigorous in formulation; how-

ever, numerical trouble occurs if the cross section becomes

rather elongated [1]–[3]. Using the extended boundary

condition, Eyges et al. [4] and Morita [5] have proposed the

scalar form via a transverse field and the vector form via

the longitudinal fields [4] or two transverse electric fields

[5]. In such methods of extended boundary condition, the

interior fields are also expanded in the Bessel functions

with unknown coefficients which can be solved by further

relating them through some surface integrals pertaining to

the exterior region. Other methods capable of treating

arbitrarily-shaped fibers include the generalized tele-

graphist’s equation [6], the method of effective cross sec-

tion [7], and the variational formula [8], which incorporate

some approximation in their formulations and will not be

discussed further.
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As for the more complicated structure of multiple wave-

guides embedded in a homogeneous medium, Marcatili [9]

has presented the transcendental equations for rectangular

waveguides, from which propagation constants of guided

modes can be found in closed form. These equations are

obtained by neglecting the boundary conditions in some

regions where the field intensity is usually small and,

consequently, simplifying the two-dimensional propagation

problem into that of slab waveguides. Besides, Solbach and

Wolff [10] have proposed a rigorous method in which the

exterior and the interior fields are expanded in plane waves

(standing or evanescent) after the introduction of an artifi-

cial shielding plate. The calculated results are reported to

agree with the experimental data for single and coupled

dielectric image lines of rectangular cross sections.

In this investigation, based on the surface integral equa-

tions, a novel method is proposed to treat the propagation

characteristics of homogeneous dielectric waveguides of

arbitrary cross sections in both the rigorous vector and the

scalar forms. This method is ready to be generalized to the

cases of multiple waveguides embedded in a single sur-

rounding medium, which include the coupled dielectric

image lines used in microwave integrated circuits. Further,

Green’s function (for the cladding region) at cutoff is

presented so that the proposed method is capable of treat-

ing cutoff frequencies of the aforementioned guiding struc-

tures.

The surface integral equations are formulated in Section

H to relate the associated fields and their normal deriva-

tives at the boundaries of dielectric cylinders. In Section

III, the Green’s function at cutoff is presented. Then the

propagation characteristics of guided modes can be

determined by point-matching at such boundaries the nor-

mal derivatives for the scalar form or the four kinds of

tangential fields (deduced from the associated fields and

their normal derivatives) for the rigorous vector form.

Numerical results of single and double waveguides with

circular and rectangular cross sections are presented in

Section V for both the vector and scalar forms.

II. FORMULATION

Consider a guiding structure composed of several homo-

geneous dielectric cylinders with arbitrary cross sections
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embedded in a single surrounding medium as depicted in

Fig. l(a); along such a structure, a time-harmonic electro-

magnetic wave of angular frequency o propagates with a

propagation constant ~ in the axial(z) direction. Since the

dielectric materials encountered in such a structure are

regionally homogeneous, the fields satisfy the scalar

Helmholtz equation in each region as stated by

v:F(?)+k2F(i)=o (1)

where F denotes any field component in rectangular coor-

dinates, v: denotes the Laplacian operator in a transverse

plane, k2 = k~c – fi2 (the subscript of ~, as well as those of

? and fi (Fig. l(a)) in later discussions, is ignored), and k.

is the free-space propagation constant. Using Green’s sec-

ond identity, the differential equation (1) for a homoge-

neous region R can be converted to an integral equation as

$[ dG(k,7,7’)
– F(P)

dF(F)
.

dn
+G(k,7,7’)—

dn 1
d?’ (2)

c

where the left-hand side is a volume integral over the

transverse-plane region R, the right-hand side is a closed

surface integral over the boundary contour C (the surface

of R), and d/dn denotes an inward normal derivative. In

the above equation, if G is chosen to satisfy

v:G(k, i,i’)+k2G(k, i, F’)= –s3(li -71) (3)

where the delta function is defined in a way such that the

value of its volume integral is unity, then (2) reduces to the

form of

dG(k, ?, 7’) dF(7’)
F(7) = #C[F(7’) dn –G(k,7,7’)~ 1d?’.

(4)

It can be verified that the function taking the form of

[(1/4j)H~2J(k17 – ~’1)], known as the two-dimensional

Green’s function, satisfies (3). Note that k maybe a real or

pure-imaginary quantity. In the limit of the field point to

be calculated approaching the boundary, (4) becomes

dG(k,7,7’)
~F(~) = ~CF(F) dn di’

$(
dF(Z)

— G k,i, i’) ~ d?’
c

where / denotes the Cauchy principal value integral

(5)

with
the singularity at the point of i’= 7 being removed. In

deriving (5), the boundary in the vicinity of the singularity

is approximated by a straight segment and the contribution

of the singularity is determined by deforming outward the

integration contour at 7 into a semicircle with a vanishing

radius and using the property of the Hankel function with

vanishing arguments. (For an angled segment, the contri-

bution can be determined in a similar way.) The relation

between F and dF/dn for each one of the regions involved

is independent of other regions and is solved separately.
The relation among all the regions is carried through the

Y
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Fig. 1. Cross sections of the guiding structures. (a) Two coupled dielec-
tric waveguides of arbitrary cross sections. (b) Two identical, coupled
dielectric image lines of rectangular cross sections. (c) Two identical,
coupled dielectric waveguides of rectangular cross sections.

continuity requirement of some associated fields, as fol-

lows.

In the rigorous vector form, the four kinds of tangential

fields (E=, Hz, El, and H[) should be made continuous
across the boundaries where permittivit y discontinuity y ex-

ists. While not all of these fields are needed in the formula-

tion, since some fields can be related through Maxwell’s

equations to other fields. One of the ways is to formulate

them in terms of the axial component; from

transverse tangential fields cart be obtained as

[

– jfi 8E, Up. i?H=
E,=— — ——

k26V+~i3n 1
and

[

– j~ 8HZ UC 8EZ
H,==— — ——

k2 i31-/3dn 1

which the

(6a)

(6b)

where 8/81 denotes the derivative in the ? direction as
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depicted in Fig. l(a). However, it is found from the calcula-

tion that for some modes, this E= – Hz formulation yields

unreliable results in the near cutoff region. Such trouble is

believed due to the presence of the denominator k2 in (6)
for the cladding region, since the numerical errors in the

brackets of (6) will be augmented when the corresponding

denominator k 2 becomes small. Further, such a denomina-

tor vanishes at cutoff and, hence, makes it difficult in

treating cutoff frequencies. Another way is to formulate

them in terms of transverse fields (EX – EY or HX – HY). It

is noted that, due to the fact that the transverse magnetic

fields are continuous at a permittivity discontinuity, it is of

considerable convenience to employ the HX – HY formula-

tion, in which the longitudinal fields (Ez and ~z) can be

obtained respectively from the relations of @E = v x ~

andv. H=Oas

‘“E=(-%-:l/(

and

aHn aH[
jflHz=z+7

where H. denotes the component in the

plicitly,

Hn = HXCOS6 + H, sin 9

H[ = HXsin6’ – HYCOS6

and d is the angle from the x direction

(7a)

(7b)

?z direction. Ex-

to fi. Note that

from the relation of – jtipOH = v x E-, it can be shown

that the transverse tangential electric field E{ has been

made continuous at the boundaries in the HX – HY formu-

lation. Thus, from (7), one obtains a complete description

of the whole guiding structure in terms of HX and HP and

their normal derivatives at all the boundaries encountered.

By matching the longitudinal fields at such boundaries and

using the relation of (5), the propagation characteristics

can be determined. Once the eigenvalues and the associ-

ated eigenfunctions are found, the corresponding field pat-

terns can be obtained from (4).

As the differences among the permittivities of all the

regions become small enough, any transverse-field compo-

nent in rectangular coordinates satisfies the Helmholtz

equation everywhere and, consequently, such a field and its

normal derivative are continuous everywhere in the entire

space. Thus, one can formulate the propagation problem in

terms of such a field and obtain the propagation character-

istics in the scalar form by matching its normal derivative

at all the boundaries encountered.

In case the cross section of a guiding structure possesses

symmetry about some axis, the field patterns of guided
modes will be of either reflection or anti-reflection about

that axis. Therefore, if Hx is symmetric about that axis, HY

will be antisymmetric, and vice versa. Due to the opposite

symmetry between HX and HY, we refer hereafter to the

symmetry type with respect to HY. Note that the associated

fields and their normal derivatives possess the same sym-

metry. By utilizing such a symmetry property, the orders of

the resultant matrices in Section IV can be reduced.

HI. GREEN’S FUNCTION AT CUTOFF

At cutoff, ~ 2 ~ k~cl, here c1 is the relative permittivity

of the cladding. Under such a situation, the Green’s func-

tion for the cladding becomes singular as the argument of

the corresponding Hankel function vanishes. In view of

this, the Green’s function at cutoff is treated otherwise, as

follows.

A function that satisfies (3) with k = O may be con-

structed from [Al + A z in Ii – F‘1]. We substitute such a

quantity into (3) and integrate both sides of (3) over a

domain containing the point of ;. Using the integration to

cancel two factors which otherwise lead to singularities, it

is found that A* = – 1/2 n, while Al remains unde-

termined; in other words, Al may take any value. From

the calculation, it is found that, except for some modes, no

substantial deviation of the result is observed while the

value of Al is varied over several orders of magnitude. As

to the exception modes, their cutoff values are found to

deviate a few percent when the numerical values of Green’s

function distribute around zero. In view of this, we choose

a value of Al such that all the values of Green’s function

encountered are away from zero (say, greater than 10 or

less than – 10).

IV. NUMERICAL PROCEDURE

The coupled equations (5) and (7) are solved by point-

matching. Around the integration contour Cl, we choose N,

node points at which the unknown fields and their normal

derivatives are to be solved. Then the integrations in (5) are

discretized into summations. The quantities of Green’s

functions and their normal derivatives are evaluated be-

tween two associated node points, except when such two

points coincide, or when they come very close in the

multiple-cylinder case. In such situations, some finer

evaluation is used. Thereafter, for region i one obtains N,

simultaneous equations with the 2N, unknowns being the

values of F and dF/dn at the N, node points. From these

equations, one can express explicitly dF/dn in term of F
by solving the corresponding N, x Ni matrix, which is

complex when /32 < k~c, and is real otherwise. Once the

explicit relations are solved for every region, they are

substituted in (7) for corresponding regions. The differenti-

ation ( i7Hn/ 6’1) in (7a) is approximated by a three-point

finite-difference for general cases of irregularly-spaced node

points. The differentiation ( aH,/ al) in (7b) is continuous

automatically and is deleted in actual calculation. It is

noted that since all the transverse fields of guided modes

are real quantities, the imaginary parts of those complex

explicit relations are deleted. Then, from the continuity

requirement, one arrives at a 2N X 2N real matrix (N= Nl,

the number of node points of region 1 or the sum of Ni’s of

all the other regions) with the unknowns being Hx and H,
at the N node points. By searching the roots of its determi-

nant, one can determine the propagation characteristics of

guided modes in the rigorous vector form. As to the scalar

form, after the explicit relations are obtained (the same

ones of the vector form), one immediately arrives at an

N x N real matrix by matching the normal derivatives at
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the ~ node points. Note that by utilizing the symmetry

property, the orders of all the matrices involved are de-

duced to one-half or one-fourth for the one-fold or two-fold

symmetry, respectively.

V. REsuLT

The following calculation is addressed to single and

double (in the latter case, the two coupled waveguides are

made to be identical) waveguides of circular and rectangu-

lar cross sections, and the results are presented in normal-

ized quantities: normalized propagation constant B, the

conventional normalized frequency P’ of a circular wave-

guide (with radius a), and another normalized frequency

V., which is convenient for a rectangular waveguide (with

one side length of 2b), where

B= [(p/kO)2– cl]/(ci–cl)

V= kOa(c2– C1)l’2

and

V,= 2kOb(e2 – tl)l’2/m

By using such normalized quantities, the propagation char-

acteristics are determined by the permittivity ratio c,( =

cz/c ~), not necessarily by their respective values.

To check the accuracy, this method is first applied to

circular waveguides of the step profile. As shown in Fig. 2,

the agreement between the calculated results for N =20

and the exact solutions is fairly good for both the vector

and scalar forms, especially for the fundamental mode.

Only the HE modes are shown in Fig. 2(a); for other

modes (TEO1, TMO1, and EH1l), the accuracy is seen to be
of about the same degree. We have also checked the results

of some lower modes of rectangular waveguides with aspect

ratios ( = a/b in Fig.l(c)) of 1 and 2 with those by the

circular-harmonic expansion [1], and the discrepancy is

within the accuracy of reading the drawings. In the follow-

ing discussion, N is chosen to be 24 or 48 for single or

double waveguides, respectively.

In contrast to the method of circular-harmonic expan-

sion, the present method is capable of treating waveguides

of rather elongated cross sections in both the vector and

scalar forms, as shown respectively in Figs 3 and 4 for a

rectangular waveguide with an aspect ratio of 5. For the

rectangular waveguides, we follow a similar mode designa-

tion of Goell [1], namely, H&(H;.) denotes a mode of

which the dominant transverse magnetic field is directed in

the x(y) direction and the dominant field pattern has m

and n peaks in the x and y directions, respectively. Note

that the E~.( E;.) modes in [1] correspond to the present

H:.( ~~.) modes. Comparing the dispersion curves in
Figs. 3 and 4, one can find a similar phenomenon dis-

cussed in [1], that is, the permittivity ratio has a stronger

effect on the H:n modes than the H;n modes. Fig. 5

illustrates the dispersion curves of two coupled dielectric

image lines with rectangular cross sections as depicted in

Fig. l(b). Due to the conducting plate, the propagation

modes correspond to those modes with IfY (or, correspond-

ingly, EX ) antisymmetric about the x am when the struc-

ture of Fig. l(c) is used instead. Due to the coupling
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Fig. 2. Dispersion curves of a circular waveguide. The solid lines are

exact solutions and the dots (.) represent the calculated results with
N = 20. (a) Vector form. (b) Scalar form.
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Fig. 3. Vectorial dispersion curves of the first eight modes of a rectangu-

lar waveguide with an aspect ratio of 5.

between such two nearby waveguides, each mode of an
isolated waveguide is split into two modes: one symmetric

and one antisymmetric about the y axis. From Fig. 5, it is

seen that the curve of an isolated waveguide sits between

the two corresponding split modes. Comparing the results

in [10] and Fig. 5, we find a discrepancy of several percent

between them, except in the near-cutoff region. We have

checked the results with larger values of N, and no sub-
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Fig. 4. Scafar dispersion curves of the first four nondegenerate modes of

a rectangular wavegtride with an aspect ratio of 5.
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Fig. 5. Vectorial dispersion curves of coupled dielectric Image lines of
rectangular cross sections with an aspect ratio of 1.39 and a separation
s/a of 1.02 (see Fig. l(c)). An additional subscript e(o) is added to the
mode designation for those modes symmetric or even (antisymmetric or

odd) about the y axis. The dashed line is the fundamental mode of the
corresponding isolated image line.

.

05

k

H;, V*=1

E,=225 I
B

H:, ,H,XI

o
0 1 2 3 L 5 6 7

s/a

Fig. 6. Splitting of the H~l and HA modes (~) of square waveguides as

a function of the separation s. The dots (.) indicate the first four
modes of a rectangular waveguide with an aspect ratio of 2.

stantial changes are observed in our results. The magnitude

of splitting in coupled waveguides as a function of the

separation s is illustrated in Fig. 6 for two coupled wave-

guides of square cross sections. When these two wave-

guides are far apart (s ~ co), the guided modes correspond
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Fig. 7. Scafar dispersion curves of two coupled circular fibers with
s/a = 1. (Here, s is given by the distance between the two centers

minus the diameter 2a.) The discrepancies between the LP~~ and LP&’
modes and between the LP~10 and LP~l” modes are too small to be

shown in the drawing.

to those of a single waveguide; as they come closer, the

splitting becomes larger. In the limit of the separation s

approaching zero, the split modes become the modes of a

single waveguide with a double aspect ratio. Similar split-

ting due to the mutual coupling also exists in the coupled

circular waveguides (with the rectangular cross sections in

Fig. l(c) being replaced by circular ones), as illustrated in

Fig. 7 for the scalar form. While each circular LP~l mode

(except those modes with the azimuthal mode number

m = O) is split into 4 modes: the LP;~ (symmetric and

symmetric about the x and y axis, respectively), LP~7

(symmetric and antisymmetric), LP;~ (antisymmetric and
symmetric), and LP~~ (antisymmetric and antisymmetric)

modes. As to the modes with m = O, since their field

patterns should be symmetric about the x axis, only two

split modes exist. From Figs. 5 and 7, it is found that the

splitting is stronger for a lower value of B or for lower

modes, especially for the fundamental modes. It indicates

that for given propagation constants the fields of the

fundamental modes penetrate farthest into the outer clad-

ding.

Using Green’s function at cutoff for the cladding (region

1 in Fig. 1), cutoff frequencies of the guided modes can be

determined. Calculated normalized cutoff frequencies of
the circular LPII, LPZI, and LPOZ modes are 2.408, 3.849,

and 3.867, respectively; the corresponding exact solutions

are 2.405, 3.832, and 3.832, respectively. Results of isolated

and coupled rectangular waveguides are presented in Table

I. For comparison, we also list the corresponding normal-

ized frequencies at a very small value of B, (say, B =
0.0001). From the results, it is found that, for some modes,

the frequencies at a very small B agree substantially with

the corresponding cutoff frequencies (at B = O); however,

for the fundamental modes and some other modes (the

exception modes in Section III), the cutoff frequencies are

appreciably a little lower. From Table I, it is seen that for

an isolated waveguide, there are two fundamental modes

that are never cutoff: the H{’ and 11~1 modes. As to the

coupled waveguides, they still possess two fundamental

modes ( H;le and H:10 ), since the cutoff frequencies of two

of the split modes shift from zero.
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TABLE I
NORMALIZED CUTOFF FREQUENCIES OF ILECTANGULAR

WAVEGUIDES WITH a/b= 2

Mode even odd—

~;l 0.00 (0.244)’ 0.00 (0.288) 0.00 (0.215) 0.475 (0.476)

~x
11 0.00 (0.244) 0.00 (0.329) 0.537 (0.538) 0.00 (0.253)

~Y 0.818 (0.819) 0.861

H:: 0.818 (0.819) 0.928

~Y
31 1.244 (1.261) 1.256

~x
31 1.244 (1.261) 1.320

0.861) 0.840 (0.844) 0.897 (0.898)

0.928) 0.959 (0.960) 0.910 (0.913)

1.284) 1.254 (1.270) 1.332 (1.332)

1.337) 1.367 (1.368) 1.318 (1.328)

“Y
12 1.199 (1.200) 1.230 (1.230) 1.216 (1.217) 1.243 (1.244)

~x
12 1.199 (1.200) 1.325 (1.326) 1.347 (1.348) 1.302 (1.304)

*The parenthesized data present the corresponding normalized frequencies at B = 0.0001.

VI. CONCLUSION

In this investigation, a method of surface integral equa-

tions has been originally developed in the rigorous vector

and the scalar forms, which can treat single as well as

multiple waveguides of arbitrary cross sections. Green’s
function at cutoff is also presented to treat the correspond-

ing cutoff frequencies.

Note that the present method cannot be applied directly

to those waveguides, such as the slab-coupled waveguides

[11], in which the boundary of permittivity discontinuity

and, hence, the integration contour extend to infinity. An

extension of the present rigorous method to treat such

structures is discussed in [12].

Another important extension of the present method is to

combine with the finite-element method for treating the

more general guiding structures which include some

bounded inhomogeneous regions. For such inhomogeneous

regions, the explicit relations can be handled by the finite-

element method (instead of (5)). Except for this, the other

works toward obtaining the propagation characteristics are

the same as in this investigation. By using such a combined

method, the manipulation of the more time-consuming

finite-element method is carried out within only the inho-

mogeneous regions. It results in a large reduction in” com-

putation effort as compared with other methods in the

literature (for a typical example, see [13]), in which the

calculation of the finite-element method has to be extended

far into the outer homogeneous regions.
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