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A Surface Integral Equations Method for
Homogeneous Optical Fibers
and Coupled Image Lines of
Arbitrary Cross Sections

CHING-CHUAN SU

Abstract —Based on the surface integral equations, a novel method is
developed to treat the propagation characteristics of homogeneous optical
fibers of arbitrary cross sections in both the rigorous vectorial and the
approximate scalar formulations. This method is ready to be generalized to
the cases of multiple dielectric waveguides, such as the coupled dielectric
image lines used in microwave integrated circuits. Further, Green’s func-
tion at cutoff is presented so that the corresponding cutoff frequencies can
be treated. Numerical results of propagation characteristics of single and
double waveguides are presented in both the vector and scalar forms.

I. INTRODUCTION

N THE TREATMENT OF propagation characteristics

of homogeneous optical fibers with arbitrary cross sec-
tions, several numerical methods have been proposed.
Among them, Goell [1] has developed the method of cir-
cular-harmonic expansion, in which the interior and the
exterior fields are expanded respectively in the Bessel and
the modified Bessel functions with unknown coefficients.
The propagation constants of guided modes, as well as
such coefficients, are determined by solving a matrix equa-
tion which, in turn, results from matching the four kinds of
tangential fields around the boundary of the core region.
This expansion method is rigorous in formulation; how-
ever, numerical trouble occurs if the cross section becomes
rather elongated [1]-[3]. Using the extended boundary
condition, Eyges et al. [4] and Morita [5] have proposed the
scalar form via a transverse field and the vector form via
the longitudinal fields [4] or two transverse electric fields
[5]- In such methods of extended boundary condition, the
interior fields are also expanded in the Bessel functions
with unknown coefficients which can be solved by further
relating them through some surface integrals pertaining to
the exterior region. Other methods capable of treating
arbitrarily-shaped fibers include the generalized tele-
graphist’s equation [6], the method of effective cross sec-
tion [7], and the variational formula [8], which incorporate
some approximation in their formulations and will not be
discussed further.
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As for the more complicated structure of multiple wave-
guides embedded in a homogeneous medium, Marcatili [9]
has presented the transcendental equations for rectangular
waveguides, from which propagation constants of guided
modes can be found in closed form. These equations are
obtained by neglecting the boundary conditions in some
regions where the field intensity is usually small and,
consequently, simplifying the two-dimensional propagation
problem into that of slab waveguides. Besides, Solbach and
Wolff [10] have proposed a rigorous method in which the
exterior and the interior fields are expanded in plane waves
(standing or evanescent) after the introduction of an artifi-
cial shielding plate. The calculated results are reported to
agree with the experimental data for single and coupled
dielectric image lines of rectangular cross sections.

In this investigation, based on the surface integral equa-
tions, a novel method is proposed to treat the propagation
characteristics of homogeneous dielectric waveguides of
arbitrary cross sections in both the rigorous vector and the
scalar forms. This method is ready to be generalized to the
cases of multiple waveguides embedded in a single sur-
rounding medium, which include the coupled dielectric
image lines used in microwave integrated circuits. Further,
Green’s function (for the cladding region) at cutoff is
presented so that the proposed method is capable of treat-
ing cutoff frequencies of the aforementioned guiding struc-
tures.

The surface integral equations are formulated in Section
IT to relate the associated fields and their normal deriva-
tives at the boundaries of dielectric cylinders. In Section
IT1, the Green’s function at cutoff is presented. Then the
propagation characteristics of guided modes can be
determined by point-matching at such boundaries the nor-
mal derivatives for the scalar form or the four kinds of
tangential fields (deduced from the associated fields and
their normal derivatives) for the rigorous vector form.
Numerical results of single and double waveguides with
circular and rectangular cross sections are presented in
Section V for both the vector and scalar forms.

I1I. FORMULATION

Consider a guiding structure composed of several homo-
geneous dielectric cylinders with arbitrary cross sections
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embedded in a single surrounding medium as depicted in
Fig. 1(a); along such a structure, a time-harmonic electro-
magnetic wave of angular frequency o propagates with a
propagation constant B in the axial (z) direction. Since the
dielectric materials encountered in such a structure are
regionally homogeneous, the fields satisfy the scalar
Helmbholtz equation in each region as stated by

V2F(F)+k*F(r)=0 (1)

where F denotes any field component in rectangular coor-
dinates, v,;> denotes the Laplacian operator in a transverse
plane, k> = ke — B* (the subscript of e, as well as those of
! and A (Fig. 1(a)) in later discussions, is ignored), and k,
is the free-space propagation constant. Using Green’s sec-
ond identity, the differential equation (1) for a homoge-
neous region R can be converted to an integral equation as

f[F(r ) 2G(k, 7, 7)—G(k, 7, 7" )V 2F ()] dF'
95[ F(7 )——_—F,)+G(k,7,i’)dF‘§:)

where the left-hand side is a volume integral over the
transverse-plane region R, the right-hand side is a closed
surface integral over the boundary contour C (the surface
of R), and d/dn denotes an inward normal derivative. In
the above equation, if G is chosen to satisfy

v G(k,7, 7))+ k*G(k, 7,7 )==8(F=F]) (3)

where the delta function is defined in a way such that the
value of its volume integral is unity, then (2) reduces to the
form of

dr’ (2)

dG(k,7,7")

F(f)=¢C[F(f')—#—-—

G(k,7,7) ‘Z )
(4)

1t can be verified that the function taking the form of
[(1/4/YHP(k|F — 7], known as the two-dimensional
Green’s function, satisfies (3). Note that k may be a real or
pure-imaginary quantity. In the limit of the field point to
be calculated approaching the boundary, (4) becomes

Lr() = f R DT g

—95G(k

where { denotes the Cauchy principal value 1ntegral with
the singularity at the point of 7’=7 being removed. In
deriving (5), the boundary in the vicinity of the singularity
is approximated by a straight segment and the contribution
of the singularity is determined by deforming outward the
integration contour at 7 into a semicircle with a vanishing
radius and using the property of the Hankel function with
vanishing arguments. (For an angled segment, the contri-
bution can be determined in a similar way.) The relation
between F and dF/dn for each one of the regions involved
is independent of other regions and is solved separately.
The relation among all the regions is carried through the
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Fig. 1. Cross sections of the guiding structures. (a) Two coupled dielec-
tric waveguides of arbitrary cross sections. (b) Two identical, coupled
dielectric image lines of rectangular cross sections. (¢) Two identical,
coupled dielectric waveguides of rectangular cross sections.

continuity requirement of some associated fields, as fol-
lows.

In the rigorous vector form, the four kinds of tangential
fields (E,, H,, E, and H,) should be made continuous
across the boundaries where permittivity discontinuity ex-
ists. While not all of these fields are needed in the formula-
tion, since some fields can be related through Maxwell’s
equations to other fields. One of the ways is to formulate
them in terms of the axial component, from which the
transverse tangential fields can be obtained as

—JIB aEz Wiy a‘PIz
= _ 4 —
E==a [ al "B on

(62)
and

(6b)

where d/08! denotes the derivative in the I direction as
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depicted in Fig. 1(a). However, it is found from the calcula-
tion that for some modes, this E, — H, formulation yields
unreliable results in the near cutoff region. Such trouble is
believed due to the presence of the denominator k2 in (6)
for the cladding region, since the numerical errors in the
brackets of (6) will be augmented when the corresponding
denominator k2 becomes small. Further, such a denomina-
tor vanishes at cutoff and, hence, makes it difficult in
treating cutoff frequencies. Another way is to formulate
them in terms of transverse fields (E, — E, or H,— H)). It
is noted that, due to the fact that the transverse magnetic
fields are continuous at a permittivity discontinuity, it is of
considerable convenience to employ the H, — H, formula-
tion, in which the longitudinal fields (£, and H,) can be
obtained respectively from the relations of jweE =V X H
and v-H=0 as

o (H, 2,
""Z‘(az‘an) ‘

JH, 0H,
+ —_—
an al
where H, denotes the component in the 7 direction. Ex-
plicitly, :
H,=H cosf + H,sin
H,=H, sinf — Hcosd

(7a)

and

JBH., = (7b)

and @ is the angle from the x direction to 7. Note that
from the relation of — jop,H =v X E, it can be shown
that the transverse tangential electric field £, has been
made continuous at the boundaries in the H, — H, formu-
lation. Thus, from (7), one obtains a complete description
of the whole guiding structure in terms of H_and H, and
their normal derivatives at all the boundaries encountered.
By matching the longitudinal fields at such boundaries and
using the relation of (5), the propagation characteristics
can be determined. Once the eigenvalues and the associ-
ated eigenfunctions are found, the corresponding field pat-
terns can be obtained from (4).

As the differences among the permittivities of all the
regions become small enough, any transverse-field compo-
nent in rectangular coordinates satisfies the Helmholtz
equation everywhere and, consequently, such a field and its
normal derivative are continuous everywhere in the entire
space. Thus, one can formulate the propagation problem in
terms of such a field and obtain the propagation character-
istics in the scalar form by matching its normal derivative
at all the boundaries encountered.

In case the cross section of a guiding structure possesses
symmetry about some axis, the field patterns of guided
modes will be of either reflection or anti-reflection about
that axis. Therefore, if H, is symmetric about that axis, H,
will be antisymmetric, and vice versa. Due to the opposite
symmetry between H, and H,, we refer hereafter to the
symmetry type with respect to /. Note that the associated
fields and their normal derivatives possess the same sym-
metry. By utilizing such a symmetry property, the orders of
the resultant matrices in Section IV can be reduced.
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At cutoff, B% — kl,, here ¢, is the relative permittivity
of the cladding. Under such a situation, the Green’s func-
tion for the cladding becomes singular as the argument of
the corresponding Hankel function vanishes. In view of
this, the Green’s function at cutoff is treated otherwise, as
follows.

A function that satisfies (3) with & =0 may be con-
structed from [A4,+ A,In|r -~ F’[l. We substitute such a
quantity into (3) and integrate both sides of (3) over a
domain containing the point of 7. Using the integration to
cancel two factors which otherwise lead to singularities, it
is found that A,=-1/2«, while 4, remains unde-
termined; in other words, 4, may take any value. From
the calculation, it is found that, except for some modes, no
substantial deviation of the result is observed while the
value of A, is varied over several orders of magnitude. As
to the exception modes, their cutoff values are found to
deviate a few percent when the numerical values of Green’s
function distribute around zero. In view of this, we choose
a value of A4, such that all the values of Green’s function
encountered are away from zero (say, greater than 10 or
less than —10).

GREEN’S FUNCTION AT CUTOFF

IV. NUMERICAL PROCEDURE

The coupled equations (5) and (7) are solved by point-
matching. Around the integration contour C,, we choose N,
node points at which the unknown fields and their normal
derivatives are to be solved. Then the integrations in (5) are
discretized into summations. The quantities of Green’s
functions and their normal derivatives are evaluated be-
tween two associated node points, except when such two
points coincide, or when they come very close in the
multiple-cylinder case. In such situations, some finer
evaluation is used. Thereafter, for region 7 one obtains N,
simultaneous equations with the 2N, unknowns being the
values of F and dF/dn at the N, node points. From these
equations, one can express explicitly dF/dn in term of F
by solving the corresponding N, X N, matrix, which is
complex when B2 <kJe, and is real otherwise. Once the
explicit relations are solved for every region, they are
substituted in (7) for corresponding regions. The differenti-
ation (dH, /dl) in (7a) is approximated by a three-point
finite-difference for general cases of irregularly-spaced node
points. The differentiation (dH,/d!) in (7b) is continuous
automatically and is deleted in actual calculation. It is
noted that since all the transverse fields of guided modes
are real quantities, the imaginary parts of those complex
explicit relations are deleted. Then, from the continuity
requirement, one arrives at a 2N X 2N real matrix (N = N,
the number of node points of region 1 or the sum of N;’s of
all the other regions) with the unknowns being H, and H,
at the N node points. By searching the roots of its determi-
nant, one can determine the propagation characteristics of
guided modes in the rigorous vector form. As to the scalar
form, after the explicit relations are obtained (the same
ones of the vector form), one immediately arrives at an
N X N real matrix by matching the normal derivatives at



SU:. SURFACE INTEGRAL EQUATIONS METHOD

the N node points. Note that by utilizing the symmetry
property, the orders of all the matrices involved are de-
duced to one-half or one-fourth for the one-fold or.two-fold
symmetry, respectively.

V. REsULT

The following calculation is addressed to single and
double (in the latter case, the two coupled waveguides are
made to be identical) waveguides of circular and rectangu-
lar cross sections, and the results are presented in normal-
ized quantities: normalized propagation constant B, the
conventional normalized frequency V of a circular wave-
guide (with radius a), and another normalized frequency
V,, which is convenient for a rectangular waveguide (with
one side length of 2b), where

B= [(:B/ko) - ‘1]/(% —€)
V=koa(€2_f1)1/2

and
V,=2kob(e, — ;) /m.

By using such normalized quantities, the propagation char-
~ acteristics are determined by the permittivity ratio ¢ (=
€, /€1), not necessarily by their respective values.

To check the accuracy, this method is first applied to
circular waveguides of the step profile. As shown in Fig. 2,
the agreement between the calculated results for N =20
and the exact solutions is fairly good for both the vector
and scalar forms, especially for the fundamental mode.
Only the HE modes are shown in Fig. 2(a); for other
modes (TE,, TM;, and EH,;), the accuracy is seen to be
of about the same degree. We have also checked the results
of some lower modes of rectangular waveguides with aspect
ratios (=a /b in Fig.1(c)) of 1 and 2 with those by the
circular-harmonic expansion [1], and the discrepancy is
within the accuracy of reading the drawings. In the follow-
ing discussion, N is chosen to be 24 or 48 for single or
double waveguides, respectively.

In contrast to the method of circular-harmonic expan-
sion, the present method is capable of treating waveguides
of rather elongated cross sections in both the vector and
scalar forms, as shown respectively in Figs 3 and 4 for a
rectangular waveguide with an aspect ratio of 5. For the
rectangular waveguides, we follow a similar mode designa-
tion of Goell [1], namely, H;, (H},) denotes a mode of
which the dominant transverse magnetic field is directed in
the x(y) direction and the dominant field pattern has m
and n peaks in the x and y directions, respectively. Note
that the E (E; ) modes in [1] correspond to the present

> (H n) modes. Comparing the dispersion curves in
Flgs. 3 and 4, one can find a similar phenomenon dis-
cussed in [1], that is, the permittivity ratio has a stronger
effect on the H} 6 modes than the H},, modes. Fig. 5
illustrates the dispersion curves of two coupled dielectric
image lines with rectangular cross sections as depicted in
Fig. 1(b). Due to the conducting plate, the propagation
modes correspond to those modes with H, (or, correspond-
© ingly, E.) antisymmetric about the x axis when the struc-
ture of Fig. 1(c) is used instead. Due to the coupling
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Fig. 2. Dispersion curves of a circular waveguide. The solid lines are
exact solutions and the dots (®) represent the calculated results with
N = 20. (a) Vector form. (b) Scalar form.
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Fig. 3. Vectorial dispersion curves of the first eight modes of a rectangu-

lar waveguide with an aspect ratio of 5.

between such two nearby waveguides, each mode of an
isolated waveguide is split into two modes: one symmetric
and one antisymmetric about the y axis. From Fig. 5, it is
seen that the curve of an isolated waveguide sits between
the two corresponding split modes. Comparing the results
in [10} and Fig. 5, we find a discrepancy of several percent
between them, except in the near-cutoff region. We have’
checked the results with larger values of N, and no sub-
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Fig. 4. Scalar dispersion curves of the first four nondegenerate modes of
a rectangular waveguide with an aspect ratio of 5.
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Fig. 5. Vectorial dispersion curves of coupled dielectric image lines of

rectangular cross sections with an aspect ratio of 1.39 and a separation
s/a of 1.02 (see Fig. 1(c)). An additional subscript e(e) is added to the
mode designation for those modes symmetric or even (antisymmetric or
odd) about the y axis. The dashed line is the fundamental mode of the
corresponding isolated image line.
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Fig. 6. Splitting of the H}; and Hjj modes (W) of square waveguides as
a function of the separation s. The dots (@) indicate the first four
modes of a rectangular waveguide with an aspect ratio of 2.

stantial changes are observed in our results. The magnitude
of splitting in coupled waveguides as a function of the
separation s is illustrated in Fig. 6 for two coupled wave-
guides of square cross sections. When these two wave-
guides are far apart (s — o), the guided modes correspond
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Fig. 7. Scalar dispersion curves of two coupled circular fibers with
s/a=1. (Here, s is given by the distance between the two centers
minus the diameter 2a.) The discrepancies between the LP5¢ and LP5¢
modes and between the LPj” and LP;)° modes are too small to be
shown in the drawing.

to those of a single waveguide; as they come closer, the
splitting becomes larger. In the limit of the separation s
approaching zero, the split modes become the modes of a
single waveguide with a double aspect ratio. Similar split-
ting due to the mutual coupling also exists in the coupled
circular waveguides (with the rectangular cross sections in
Fig. 1(c) being replaced by circular ones), as illustrated in
Fig. 7 for the scalar form. While each circular LP,, mode
(except those modes with the azimuthal mode number
m = 0) is split into 4 modes: the LP;; (symmetric and
symmetric about the x and y axis, respectively), LP,7
(symmetric and antisymmetric), LP;¢ (antisymmetric and
symmetric), and LP2? (antisymmetric and antisymmetric)
modes. As to the modes with m =0, since their field
patterns should be symmetric about the x axis, only two
split modes exist. From Figs. 5 and 7, it is found that the
splitting is stronger for a lower value of B or for lower
modes, especially for the fundamental modes. It indicates
that for given propagation constants the fields of the
fundamental modes penetrate farthest into the outer clad-
ding.

Using Green’s function at cutoff for the cladding (region
1 in Fig. 1), cutoff frequencies of the guided modes can be
determined. Calculated normalized cutoff frequencies of
the circular LP;;, LP,;, and LPy, modes are 2.408, 3.849,
and 3.867, respectively; the corresponding exact solutions
are 2.405, 3.832, and 3.832, respectively. Results of isolated
and coupled rectangular waveguides are presented in Table
I. For comparison, we also list the corresponding normal-
ized frequencies at a very small value of B, (say, B=
0.0001). From the results, it is found that, for some modes,
the frequencies at a very small B agree substantially with
the corresponding cutoff frequencies (at B = 0); however,
for the fundamental modes and some other modes (the
exception modes in Section III), the cutoff frequencies are
appreciably a little lower. From Table I, it is seen that for
an isolated waveguide, there are two fundamental modes
that are never cutoff: the Hy; and H{; modes. As to the
coupled waveguides, they still possess two fundamental
modes (Hy,, and H7y,), since the cutoff frequencies of two
of the split modes shift from zero.
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TABLE I
NoORMALIZED CUTOFF FREQUENCIES OF RECTANGULAR
WAVEGUIDES WITH a /b =2

Coupled Waveguides

€1 Er = 2.25 E} = 2.25, s/a = 2
Mode even odd
H{l 0.00 (0.244)"  0.00 (0.288) 0.00 (0.215) 0.475 (0.476)
Hfl 0.00 (0.244) 0.00 (0.329) 0.537 (0.538) 0.00 (0.253)
Hgl 0.818 (0.819) 0.861 (0.861) 0.840 (0.844) . 0.897 (0.898)
H§1 0.818 (0.819) 0.928 (0.928) 0.959 (0.960) 0.910 (0.913)
Hgl 1.244 (1.261) 1.256 (1.284) 1.254 (1.270) 1.332 (1.332)
H§1 1.244 (1.261) 1.320 (1.337) 1.367 (1.368) 1.318 (1.328)
H{z 1.199 (1.200) 1.230 (1.230) 1.216 (1.217) 1.243 (1.244)
HTZ 1.199 (1.200) 1.325 (1.326) 1,347 (1.348) 1.302 (1.304)

*The parenthesized data present the corresponding normalized frequencies at B = 0.0001.

VL

In this investigation, a method of surface integral equa-
tions has been originally developed in the rigorous vector

CONCLUSION

.and the scalar forms, which can treat single as well as

multiple waveguides of arbitrary cross sections. Green’s
“function at cutoff is also presented to treat the correspond-
ing cutoff frequencies.

Note that the present method cannot be applied directly
to those waveguides, such as the slab-coupled waveguides
[11], in which the boundary of permittivity discontinuity
and, hence, the integration contour extend to infinity. An
extension of the present rigorous method to treat such
structures is discussed in [12]. - :

Another important extension of the present method is to
combine with the finite-element method for treating the
more general guiding structures which include some
bounded inhomogeneous regions. For such inhomogeneous
regions, the explicit relations can be handled by the finite-
element method (instead of (5)). Except for this, the other
works toward obtaining the propagation characteristics are
the same as in this investigation. By using such a combined
method, the manipulation of the more time-consuming
finite-element method is carried out within only the inho-

mogeneous regions. It results in a large reduction in com-

putation effort as compared with other methods in the
literature (for a typical example, see [13]), in which the
calculation of the finite-element method has to be extended
far into the outer homogeneous regions.
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